The Haber Process

Ammonia, an important ingredient in nitrogen-based fertilisers, is manufactured through the Haber process. This process involves a reversible reaction between nitrogen and hydrogen:

N2 (g) + 3H2 (g) 2NH3 (g)

  • Nitrogen is extracted from the air, while hydrogen is produced by reacting methane with steam.

The Haber process consists of the following steps:

1. Nitrogen and hydrogen are pumped into a compressor through pipes.

2. The gases are compressed to around 200 atmospheres within the compressor.

3. The pressurised gases are pumped into a tank and passed over an iron catalyst at 450°C. In this tank, some of the nitrogen and hydrogen react to form ammonia.

  • As this is a reversible reaction, some ammonia breaks back down into nitrogen and hydrogen.

4. The ammonia is cooled, causing it to liquefy, and then it is removed.

5. Unreacted nitrogen and hydrogen gases are recycled and passed back over the catalyst, which forms more ammonia.

Increasing the Yield

To increase the yield of ammonia, the reaction conditions can be adjusted to favour the forward reaction. This allows more ammonia to be produced at a lower cost.

Increasing the temperature

As the forward reaction in the Haber process is exothermic, a lower temperature shifts the position of equilibrium to the right. However, a lower temperature also slows the rate of reaction. This means that there is a trade off between the rate of reaction and the position of equilibrium.

At 450°C, there is a relatively fast rate of reaction and a relatively high yield of ammonia.

Increasing the pressure

A high pressure shifts the position of equilibrium to the righ. However, working with very high pressures can be expensive. To maintain a cost-effective production process, a pressure of 200 atmospheres is used.

Using a catalyst

An iron catalyst increases the rate of the reaction, without being used up in the process. This contributes to a more efficient production of ammonia.