Conversion of Units to other Units

Converting Speed Units

To convert between different units of speed, we can use conversion factors. Let’s look at the following examples:

1. Converting from kilometres per hour (km/h) to metres per second (m/s)

2. Converting from metres per second (m/s) to kilometres per hour (km/h)

3. Converting from kilometres per hour (km/h) to centimetres per minute (cm/min)

Example 1: Converting km/h to m/s

Convert 12 km/h to m/s.

First, note the following conversion factors: 1 km = 1000 m and 1 hour = 3600 seconds.

Now, use these conversion factors to cancel out the undesired units and obtain the desired units:

12\text{ km/h} = \frac{12\text{ km}}{1\text{ hr}} \times \frac{1\text{ hr}}{3600\text{ s}} \times \frac{1000\text{ m}}{1\text{ km}}

= \frac{12,000}{3,600}\text{ m/s}

= 3\frac{1}{3}\text{ m/s}.

Example 2: Converting m/s to km/h

Convert 15 m/s to km/h.

Use the conversion factors to change the units:

15\text{ m/s} = \frac{15\text{ m}}{1\text{ s}} \times \frac{3600\text{ s}}{1\text{ hr}} \times \frac{1\text{ km}}{1000\text{ m}}

= \frac{15 \times 3600}{1000}\text{ km/h}

= 54\text{ km/h}

Example 3: Converting km/h to cm/min

Convert 200 km/h to cm/min.

First, note the following conversion factors: 1 km = 100,000 cm and 1 hour = 60 minutes.

Now, use these conversion factors to change the units:

200\text{ km/h} = \frac{200\text{ km}}{1\text{ hr}} \times \frac{1\text{ hr}}{60\text{ min}} \times \frac{100,000\text{ cm}}{1\text{ km}}

= \frac{20,000,000}{60}\text{ cm/min}

= 333,333\frac{1}{3}\text{ cm/min}.

Typist Problems

Example 1:

A typist can type 15 words per minute. How long will it take the typist to type 3000 words, assuming the same rate of typing per minute?

To find the time required, divide the total number of words by the words per minute:

\text{Time} = \frac{\text{Total words}}{\text{Words per minute}} = \frac{3000}{15} = 200\text{ minutes}

Convert the minutes to hours and minutes: 200\text{ minutes} = 3\text{ hours}\ 20\text{ minutes}.

Example 2:

A typist types 20 words per minute. How many words can she type in 5 hours and 40 minutes, assuming the same rate of typing?

First, convert the given time to minutes: 5\text{ hours}\ 40\text{ minutes} = 5 \times 60 + 40 = 340\text{ minutes}.

Now, multiply the time in minutes by the typing speed:

\text{Total words} = \text{Typing speed} \times \text{Time} = 20 \times 340 = 6,800\text{ words}.

Converting Price Units

Convert £20/kg into pence/gram.

We know £1 = 100 pence and 1 kg = 1000 grams.

Now we can calculate the conversion:

£20/kg = £20/1 kg × 1 × 1 (Nothing changes)

= \frac{\text{£}20}{1\,\text{kg}} \times \frac{1\,\text{kg}}{1000\,\text{g}} \times \frac{100\,p}{\text{£}1})

= \frac{(20 \times 100)}{1000} p/g = 2 pence/gram

So, £20 per kg is equivalent to 2 pence per gram.