The Laws of Indices

We write 2\times 2\times 2\times 2\times 2 as { 2 }^{ 5 }. The small 5 on the top is the number of times 2 appears. We read it as 2 to the power of 5. The power is 5 and 2 is the base.

Likewise, 3\times 3={ 3 }^{ 2 }

5\times 5\times 5\times 5={ 5 }^{ 4 }

7\times 7\times 7={ 7 }^{ 3 }

Laws of indices

Suppose we wish to simplify { 2 }^{ 5 }\times { 2 }^{ 3 }

We can write this as ({ 2 }\times 2\times 2\times 2\times 2)\times (2\times 2\times 2).

But this is the same as { 2 }\times 2\times 2\times 2\times 2\times 2\times 2\times 2

The “2” appears 8 times. Therefore { 2 }^{ 5 }\times { 2 }^{ 3 }={ 2 }^{ 8 }

Multiplying indices

When we are multiplying indices, we add the powers, as long as the base is the same.

a^{b}\times a^{c}=a^{b+c}

For example:

3^{ 7 }\times { 3 }^{ 4 }=3^{ 7+4 }={ 3 }^{ 11 }

{ 5 }^{ 8 }\times { 5 }^{ 2 }={ 5 }^{ 10 }

{ 3 }^{ 3 }\times { 3 }^{ 6 }={ 3 }^{ 9 }

Dividing indices

When we are dividing indices, we subtract powers, as long as the base is the same.

a^{b}=a^{c}=\dfrac{a^{b}}{b^{c}}=a^{b-c}

For example:

{ 8 }^{ 14 }\div{ 8 }^{ 7 }={ 8 }^{ 14-7 }={ 8 }^{ 7 }

{ 2 }^{ 10 }\div{ 2 }^{ 4 }={ 2 }^{ 10-4 }={ 2 }^{ 6 }

{ 3 }^{ 7 }\div { 3 }^{ 5 }={ 3 }^{ 7-5 }={ 3 }^{ 2 }

{ 5 }^{ 20 }\div { 5 }^{ 12 }={ 5 }^{ 20-12 }={ 5 }^{ 8 }

The rules for brackets

\left( a^{b}\right) ^{c}=a^{b\times c}

For example:

({ { 3 }^{ 2 }) }^{ 4 }={ 3 }^{ 2 }\times { 3 }^{ 2 }\times { 3 }^{ 2 }\times { 3 }^{ 2 }={ 3 }^{ 2+2+2+2 }=3^{8}

({ { 2 }^{ 5 }) }^{ 2 }={ 2 }^{ 5\times 3 }={ 2 }^{ 15 }

({ { 3 }^{ 7 }) }^{ 2 }={ 3 }^{ 7\times 2 }={ 3 }^{ 14 }

({ { 5 }^{ 10 }) }^{ 10 }={ 5 }^{ 10\times 10 }={ 5 }^{ 100 }

({ { 4 }^{ 3 }) }^{ 5 }={ 4 }^{ 3\times 5 }={ 4 }^{ 15 }

Also, \left( ab\right) ^{n}=a^{n}\times b^{n}

For example:

\left( 4\times 3\right) ^{2}=4^{2}\times 3^{2}

When the power is zero

Except from 0, any number raised to the power of 0 is 1.

For example:

{ 5 }^{ 0 }=1,\quad { 8 }^{ 0 }=1,\quad { 1000 }^{ 0 }=1,\quad ({ -3) }^{ 0 }=1

Negative indices

We can also call a negative power a reciprocal

a^{-n}=\dfrac{1}{a^{n}} is the reciprocal of a^{n}

For example:

2^{-3}=\dfrac{1}{2^{3}}=\dfrac{1}{8}

4^{-4}=\dfrac{1}{4^{4}}=\dfrac{1}{256}

Using the Law of Indices to Simplify Numbers and Equations

We can use the laws of indices to simplify numbers and calculations. For example:

If A=2.3\times 10^{5}, B=4.5\times 10^{-2}, then AB=\left( 2.3\times 10^{5}\right) \times \left( 4.5\times 10^{-2}\right)

=10.35\times 10^{5-2}

=10.35\times 10^{3}

=1.035\times 10\times 10^{3}=1.035\times 10^{4}

Example

Simplify:

1. 3^{5}\times 3^{2}

2. 3^{5}\div 3^{3}

3. \left( 3^{2}\right) ^{5}

4. 3^{-4}

5. 3^{0}

6. \left( 3\times 7\right) ^{2}

Solutions:

1. 3^{5}\times 3^{2}=3^{5+2}=3^{7}

2. 3^{5}\div 3^{3}=3^{5-3}=3^{2}=9

3. \left( 3^{2}\right) ^{5}=3^{2\times 5}=3^{10}

4. 3^{-4}=3\dfrac{1}{4}=\dfrac{1}{81}

5. 3^{0}=1

6. \left( 3\times 7\right) ^{2}=3^{2}\times 7^{2}=9\times 49=441

Example

Simplify \left( 5^{3}\right) ^{2}\times \left( 5^{-1}\right) ^{4}

Solution:

\left( 5^{3}\right) ^{2}\times \left( 5^{-1}\right) ^{4}=5^{6}\times 5^{-4}

=5^{6-4}

=5^{2}

=25